skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Finn, Dennis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In very stable boundary layers (VSBL), a “cocktail” of submeso motions routinely result in elevated mean wind speed maxima above the ground, acting as a new source of turbulence generation. This new source of turbulent kinetic energy enhances turbulent mixing and causes mean wind profile distortion (WPD). As a results, this transient distortion in the wind profile adjusts the classical log‐law. Addressing how WPD‐induced turbulence regulates flow structures, turbulent fluxes, and transitions in stability regimes across layers remains a challenge. Eddy covariance data measured at four levels on a 62‐m tower are employed to address these questions. It is shown that the WPD initiates large turbulent eddies that penetrate downward, leading to enhanced vertical mixing and comparable turbulent transport efficiencies across layers. As a consequence, turbulence intensity and fluxes are increased. As the WPD is intensified, turbulent fluxes and turbulent flux transport caused by large eddies are also enhanced, leading to a transition from very stable to weakly stable regimes. Due to the influence of WPD‐induced large eddies, the large‐eddy turbulent Prandtl number does not deviate appreciably from unity and the partitioning between turbulent kinetic and potential energies is linearly related to the gradient Richardson number. 
    more » « less